

| Methodology | 1. Calculating SH consensus shapes and
 center molecules |
| :--- | :--- | :--- |
| 2. Ligand set representations | | 3. Gaussian ligand set comparisons

4. Gaussian ligand set comparisons
 曼保

By considering the SD of the member distances as the Gaussian width of a distribution, we calculate a "distance" (D) between two clusters, i and j, and normalizing the distance term we can write it as a Hodgkin-like similarity score Sij between two distributions.
$S_{1}=\frac{2 \int g_{1}(x) \cdot g_{(}(x) d x}{\iint_{1}(x)^{2} d x+\int g_{1}(x)^{2} d x}$
$S_{i j}=\frac{2^{3 / 2} \cdot\left(\frac{a \cdot b}{a+b}\right)^{1 / 2} \cdot e^{-\left(\frac{a b}{a+b}\right)^{2}}}{\left(a^{1 / 2}+b^{1 / 2}\right)}$

$S_{i j}=1.33!10^{\prime 41}$

Illustration of the very small Gaussian overlap between the estrogen and thrombin ligand sets.
4. Gaussian ligand set comparisons

The similarity between drug classes can be calculated rapidly and reliably by calculating the Gaussian overlap between pairs of such clusters.
Thus, it is straight-forward to calculate all-against-all cluster comparisons. It is worth noting that our cluster similarity score depends only on the similarity of pairs of centre molecules and the SDs of their respective clusters. It does not depend on the number of members of each cluster.

	Conclusions 曼保 Ínzía
	- We have presented a new 3D shape-based approach for predicting and quantifying drug promiscuity by correlating Gaussian clusters of ligand SH shapes. - The method has been validated using drug ligand sets of the MDDR and has been demonstrated to be effective in identifying drug families which are known to have related MDDR activity classes. - Our results show that GES provides an efficient way to measure the similarity between clusters of arbitrary numbers of members. - The examples shown in this study demonstrate that GES is a useful way to study polypharmacology relationships, and it could provide a novel way to propose new targets for drug repositioning.

Acknowledgements
- INRIA Nancy - Grand Est
- FP7 Marie Curie IEF Fellowship (DOVSA 254128)
Papers: http://www.loria.fr/~pereznue/ http://www.loria.fr/~ritchied/ ParaSurf + ParaFit: http://www.ceposinsilico.de/
26

