Protein Docking and 3D Ligand-Based Virtual Screening

Part 1

Dave Ritchie
Orpailleur Team
INRIA Nancy - Grand Est

Schedule

- Lecture 1 - Rigid Body Protein Docking
- Introduction / Motivation
- Protein Docking and the CAPRI Blind Docking Experiment
- The "Hex" Spherical Polar Fourier Correlation Algorithm
- Ultra-Fast Docking Using Graphics Processors (+ some GPU programming)
- Lecture 2 - New Developments in Protein Docking and Virtual Screening
- Simulating Protein Flexibility During Docking
- Data-Driven and Knowledge-Based Docking
- Multi-Component Assembly and Cross-Docking
- Shape-Based Virtual Screening - ROCS, ParaSurf, ParaFit
- Lecture 3 - Spherical Harmonic Virtual Screening
- Case Study - HIV Entry Inhibitors for the CXCR4 and CCR5 Receptors
- Recent Work - Detecting Polypharmacology Using Gaussian Ensemble Screening

Protein-Protein Interactions and Therapeutic Drug Molecules

- Protein-protein interactions (PPIs) define the machinery of life
- Humans have about $\mathbf{3 0 , 0 0 0}$ proteins, each having about 5 PPIs

- Understanding PPIs could lead to immense scientific advances
- Small "drug" molecules often inhibit or interfere with PPIs

Grosdidier et al. (2009) Advances \& Applications in Bioinformatics \& Chemistry, 2, 101-123
Pujol et al. (2009) Trends in Pharmaceutical Science, 31, 115-123

Docking and Shape Matching are Both Recognition Problems

- Ignoring flexibility, docking and shape matching are both 6D search problems

- The challenge - find computationally efficient representations for:
- protein docking \leftrightarrow translational + rotational search
- ligand shape matching \leftrightarrow mainly rotational search

Protein-Protein Interaction Challenges

- Can we predict the interactions within a proteome - i.e. predict the interactome ?

- For each interaction, can we predict the interface surfaces and the 3D complex ?
- For each protein can we predict its ligand binding sites ?

Wass, David, Sternberg (2011) Current Opinion in Structural Biology, 21, 382-390

Protein-Protein Interaction Resources

- STRING - Search Tool for Retrieval of Interacting Genes - http://string.embl.de - 12 million known PPIs; 44 million predicted
- 3DID - 3D Interacting Domains - http://3did.irbbarcelona.org
- 160,000 3D domain-domain interactions (DDIs)

Stein et al. (2010) Nucleic Acids Research, 33, D413-D417 (3DID)
Szklarzyk et al. (2011) Nucleic Acids Research, 39, D561-D568 (STRING)

What is Protein Docking and Why is Docking Difficult ?

- Protein docking $=$ predicting protein interactions at the molecular level

- If proteins are rigid $=>$ six-dimensional search space
- But proteins are flexible $=>$ multi-dimensional space!
- Modeling protein-protein interactions accurately is difficult!

Halperin et al. (2002), Proteins, 47, 409-443
Ritchie (2008), Current Protein \& Peptide Science, 9, 1-15

The CAPRI Blind Docking Experiment

- Critical Assessment of PRedicted Interactions - http://www.ebi.ac.uk/msd-srv/capri/
- Given the unbound structure, particiants have to predict the unpublished 3D complex

Janin (2005) Proteins, 60, 170-175

CAPRI Target T6 Was A Relatively Easy Target

- Amylase / AMD9 showed little difference between unbound \& bound conformations
- It also had a classic binding mode, with antibody loops blocking the enzyme active site

- Several CAPRI predictors made "high accuracy" models (Ligand RMSD $\leq 1 \AA ̊$)

CAPRI Target T27 Was A Surprisingly Difficult Target

- Arf6 GTPase / LZ2 Leucine zipper was difficult for most CAPRI predictors

- Best $=$ superposition
- Circles show LZ2 centres:
blue $=$ high quality
green $=$ medium quality
cyan $=$ acceptable qlauity
yellow $=$ wrong

Janin (2010) Molecular BioSystems, 6, 2362-2351

ICM - Multi-Start Pseudo-Brownian Monte-Carlo Energy Minimisation

- Start by sticking "pins" in protein surfaces at $15 \AA ̊$ intervals
- Find minimum energy for each pair of starting pins (6 rotations each):

$$
E=E_{H V W}+E_{C V W}+2.16 E_{e l}+2.53 E_{h b}+4.35 E_{h p}+0.20 E_{s o l v}
$$

- ICM achieved the best overall results in the first few rounds of CAPRI ...

PatchDock - Docking by Geometric Hashing

- Use "MS" program to calculate mesh surfaces for each protein
- Divide the mesh into convex "caps", concave "pits", and flat "belts"

- For docking, match pairs of concave \leftrightarrow convex, and flat \leftrightarrow any ...
... then test for interpenetrations (steric clashes) between rest of surfaces
- The method is fast (minutes/seconds), and gave good results in CAPRI

Duhovny et al. (2002), LNCS 2452, 185-200
Schneidman-Duhovny et al. (2005), Nucleaic Acids Research, 33, W363-W367
Connolly (1983), J Applied Crystallography, 16, 548-558

Predicting Protein-Protein Binding Sites

- Many algorithms / servers are available for predicting protein binding sites
- For recent review, see: Fernández-Recio (2011), WIREs Comp Mol Sci 1, 680-698
- Many docking algorithms often show clusters of preferred orientations - docking "funnels"

- Lensink \& Wodak proposed that docking methods are the best predictors of binding sites

Fernández-Recio, Abagyan (2004), J Molecular Biology, 335, 843-865
Lensink, Wodak (2010), Proteins, 78, 3085-3095

Protein Docking Using Fast Fourier Transforms

- Conventional approaches digitise proteins into 3D Cartesian grids...

- ...and use FFTs to calculated TRANSLATIONAL correlations:

$$
C[\Delta x, \Delta y, \Delta z]=\sum_{x, y, z} A[x, y, z] \times B[x+\Delta x, y+\Delta y, z+\Delta z]
$$

- BUT for docking, have to REPEAT for many rotations - EXPENSIVE!
- Conventional grid-based FFT docking $=$ SEVERAL CPU-HOURS

Knowledge-Based Protein-Protein Docking Potentials

- Several groups have developed "statistical" potentials based on "inverse Boltzmann" models
- Example - PIPER + DARS - "Decoys As Reference State" - http://structure.bu.edu/
- Define 18 atom types (based on ACP potential): N, CA, C, O, GC, CB, KN, KC, DO, ...
- Define interaction energy: $E_{I J}=-R T \ln \left(P_{I J}^{n a t} / P_{I J}^{r e f}\right)$
- $P_{I J}^{\text {nat }}=$ probability of contact between atom I and J in a native complex
(use 20 CAPRI complexes as examples containing native complexes)
- $P_{I J}^{\text {ref }}=$ probability of contact between atom I and J in a reference state (use PIPER Cartesian FFT to generate 20,000 "decoy complexes" for each native)
- Count each type of contact ($6 \AA \AA$ threshold) to make the probabilities
- This gives a matrix of 18×18 atomic interaction energies
- Clever trick: diagonalise the matrix to get the first 4 or 6 leading terms...
(allows PIPER to use 4 or 6 FFTs instead of 18)
- PIPER + DARS is one of the best approaches in CAPRI...

Kozakov et al. (2006) Proteins, 65, 392-406

DARS Finds More Hits Than ZDOCK and Shape-Only Docking

- Comparing the no. of "hits" for 33 enzyme-inhibitor complexes...

- DARS potential $=$ red; ZDOCK $(A C P)=$ green; shape-only $=$ blue

Protein Docking Using Polar Fourier Correlations

- Rigid body docking can be considered as a largely ROTATIONAL problem
- This means we should use ANGULAR coordinate systems

- With FIVE rotations, we should get a good speed-up?

Some Theory - The Spherical Harmonics

- The spherical harmonics (SHs) are examples of classical "special functions"

- Spherical polar coordinates: $\underline{r}=(r, \theta, \phi)$

- The spherical harmonics are products of Legendre polynomials and circular functions:
- Real SHs:

$$
y_{l m}(\theta, \phi)=P_{l m}(\theta) \cos m \phi+P_{l m}(\theta) \sin m \phi
$$

- Complex SHs:

$$
Y_{l m}(\theta, \phi)=P_{l m}(\theta) e^{i m \phi}
$$

- Orthogonal:

$$
\int \boldsymbol{y}_{l m} \boldsymbol{y}_{k j} \mathrm{~d} \Omega=\int \boldsymbol{Y}_{l m} \boldsymbol{Y}_{k j} \mathrm{~d} \Omega=\delta_{l k} \delta_{m j}
$$

- Rotation:

$$
\boldsymbol{y}_{l m}\left(\theta^{\prime}, \phi^{\prime}\right)=\sum_{j} \boldsymbol{R}_{j m}^{(l)}(\alpha, \beta, \gamma) \boldsymbol{y}_{l j}(\theta, \phi)
$$

Spherical Harmonic Molecular Surfaces

- Use SHs as orthogonal shape "building blocks":

- Encode distance from origin as SH series to order L:
- $r(\theta, \phi)=\sum_{l=0}^{L} \sum_{m=-l}^{l} a_{l m} \boldsymbol{y}_{l m}(\theta, \phi)$
- Reals SHs: $\boldsymbol{y}_{l m}(\boldsymbol{\theta}, \phi)$
- Coefficients: $a_{l m}$
- Solve the coefficients by numerical integration
- Normally, $L=6$ is sufficient for good overlays

Ritchie and Kemp (1999) J Computational Chemistry, 20, 383-395

Docking Needs a 3D "Spherical Polar Fourier" Representation

- Need to introduce special orthonormal Laguerre-Gaussian radial functions, $\boldsymbol{R}_{n l}(r)$
- $R_{n l}(r)=N_{n l}^{(q)} e^{-\rho / 2} \rho^{l / 2} L_{n-l-1}^{(l+1 / 2)}(\rho) ; \quad \rho=r^{2} / q, \quad q=20$.

- Surface Skin: $\quad \sigma(\underline{r})=\left\{\begin{array}{l}1 ; \underline{r} \in \text { surface skin } \\ 0 ; \text { otherwise }\end{array}\right.$ Interior: $\quad \tau(\underline{r})=\left\{\begin{array}{l}1 ; \underline{r} \in \text { protein atom } \\ 0 ; \text { otherwise }\end{array}\right.$
- Parametrise as: $\quad \sigma(\underline{r})=\sum_{n=1}^{N} \sum_{l=0}^{n-1} \sum_{m=-l}^{l} \boldsymbol{a}_{n l m}^{\sigma} \boldsymbol{R}_{n l}(\boldsymbol{r}) \boldsymbol{y}_{l m}(\boldsymbol{\theta}, \phi)$
- TRANSLATIONS: $a_{n l m}^{\sigma \prime \prime}=\sum_{n^{\prime} l^{\prime}}^{N} T_{n l, n^{\prime} l^{\prime}}^{(|m|)}(R) a_{n^{\prime} l^{\prime} m}^{\sigma}$

Ritchie (2005) J Applied Crystallography, 38, 808-818 (for translation formulae)

SPF Protein Shape-Density Reconstruction

Interior density: $\quad \tau(\underline{r})=\sum_{n l m}^{N} a_{n l m}^{\tau} \boldsymbol{R}_{n l}(r) y_{l m}(\theta, \phi)$

Image	Order	Coefficients
\mathbf{A}	Gaussians	-
B	$\mathrm{N}=16$	1,496
C	$\mathrm{N}=25$	5,525
D	$\mathrm{N}=30$	9,455

Protein Docking Using SPF Density Functions

Favourable:

$$
\int\left(\sigma_{A}\left(\underline{r}_{A}\right) \tau_{B}\left(\underline{r}_{B}\right)+\tau_{A}\left(\underline{r}_{A}\right) \sigma_{B}\left(\underline{r}_{B}\right)\right) \mathrm{d} V
$$

Unfavourable:
$\int \tau_{A}\left(\underline{r}_{A}\right) \tau_{B}\left(\underline{r}_{B}\right) \mathrm{d} V$

Score:

$$
S_{A B}=\int\left(\sigma_{A} \tau_{B}+\tau_{A} \sigma_{B}-Q \tau_{A} \tau_{B}\right) \mathrm{d} V \quad \text { Penalty Factor: } Q=11
$$

Orthogonality:

$$
\left.S_{A B}=\sum_{n l m}\left(a_{n l m}^{\sigma} b_{n l m}^{\tau}+a_{n l m}^{\tau}\left(b_{n l m}^{\sigma}-Q b_{n l m}^{\tau}\right)\right) \quad \text { (in units of volume }\right)
$$

Search:
6 D space $=1$ distance +5 Euler rotations: $\left(R, \beta_{A}, \gamma_{A}, \alpha_{B}, \beta_{B}, \gamma_{B}\right)$

Ritchie, Kemp (2000), Proteins, 39, 178-194

Hex Polar Fourier Correlation Example - 3D Rotational FFTs

- Set up 3D rotational FFT as a series of matrix multiplications...

Rotate:

$$
a_{n l m}^{\prime}=\sum_{t=-l}^{l} \boldsymbol{R}_{m t}^{(l)}\left(0, \beta_{A}, \gamma_{A}\right) a_{l t}
$$

Translate:

$$
a_{n l m}^{\prime \prime}=\sum_{k j}^{N} T_{n l, k j}^{(|m|)}(R) a_{k j m}^{\prime}
$$

Real to complex: $\quad A_{n l m}=\sum_{t} a_{n l t}^{\prime \prime} U_{t m}^{(l)}, \quad B_{n l m}=\sum_{t} b_{n l t} U_{t m}^{(l)}$

Multiply:

$$
C_{m u v}=\sum_{n l} A_{n l m}^{*} \boldsymbol{B}_{n l v} \Lambda_{l v}^{u m}
$$

3D FFT:

$$
S\left(\alpha_{B}, \beta_{B}, \gamma_{B}\right)=\sum_{m u v} C_{m u v} e^{-i\left(m \alpha_{B}+2 u \beta_{B}+v \gamma_{B}\right)}
$$

- On one CPU, docking takes from 15 to 30 minutes

Exploiting Proir Knowledge in SPF Docking

- Knowledge of even only one key residue can reduce search space enormously...
- This accelerates the calculation and helps to reduce false-positive predictions

CAPRI Results: Targets 1-7 (2000 - 2003)

Predictor	Software	Algorithm	T1	T2	T3	T4	T5	T6	T7
Abagyan	ICM	FF			$* *$			$* * *$	$* *$
Camacho	CHARMM	FF	$*$					$* * *$	$* * *$
Eisenstein	MolFit	FFT	$*$	$*$					$* * *$
Sternberg	FTDOCK	FFT		$*$				$* *$	$*$
Ten Eyck	DOT	FFT	$*$	$*$				$* *$	
Gray		MC						$* *$	$* * *$
Ritchie	Hex	SPF			$* *$			$* * *$	
Weng	ZDOCK	FFT		$* *$					$* *$
Wolfson	BUDDA/PPD	GH	$*$						$* * *$
Bates	Guided Docking	FF	-	-	-				$* * *$
Palma	BIGGER	GF	-		-			$* *$	$*$
Gardiner	GAPDOCK	GA	$*$	$*$	-	-	-	-	-
Olson	Surfdock	SH	$*$			-	-	-	-
Valencia		ANN	$*$	-	-	-	-	-	-
Vakser	GRAMM	FFT		$*$		-	-	-	-

Mendez et al. (2003) Proteins, 52, 51-67

Hex Protein Docking Example - CAPRI Target 3

- Example: best prediction for CAPRI Target 3 - Hemagglutinin/HC63

Ritchie, Kemp (2000), Proteins 39, 178-194
Ritchie (2003), Proteins, 52, 98-106

CAPRI Results: Targets 8-19 (2003 - 2005)

Predictor	Software	T8	T9	T10	T11	T12	T13	T14	T15-T17	T18	T19
Abagyan	ICM	**		*	**	***	*	***		**	**
Wolfson	PatchDock	**	*	*	*	*	-	**		**	*
Weng	ZDOCK/RDOCK	**			*	***	***	***		**	**
Bates	FTDOCK	*		*	**	*		**		**	*
Baker	RosettaDock	-			**	***	**	***			***
Camacho	SmoothDock	**				***	***	**		**	*
Gray	RosettaDock	***	-	-	**	***					**
Bonvin	Haddock	-	-	**	**		***	***			
Comeau	ClusPro	**				***	*				*
Sternberg	3D-DOCK	**			*	*		**			*
Eisenstein	MolFit	***			*	***		**			
Ritchie	Hex				**	***	*	*			
Zhou		-	-		-	***	**	*		*	
Ten Eyck	DOT					***	***	**			
Zacharias	ATTRACT	**		-	-	-	-	***			**
Valencia		*			*	*	-				-
Vakser	GRAMM	-	-		-	-	-	**		**	
Homology	modelling				\#			\#			\#
Cancelled									\#		

Mendez et al. (2005), Proteins, 60, 150-169

High Order FFTs, Multi-Threading, and Graphics Processors

- Spherical polar coordinates give an analytic formula for 6D correlations:

In particular: $\quad S_{A B}=\sum_{j s m l v r t} \Lambda_{j s}^{r m} T_{j s, l v}^{(|m|)}(R) \Lambda_{l v}^{t m} e^{-i\left(r \beta_{A}-s \gamma_{A}+m \alpha_{B}+t \beta_{B}+v \gamma_{B}\right)}$

- This allows high order FFTs to be used - 1D, 3D, and 5D
- ... multiple FFTs can easily be executed in parallel
- ... also, it is relatively easy to implement on modern GPUs

- Up to 512 arithmetic "cores"
- Up to 6 Gb memory
- Easy API with C++ syntax
- Grid of threads model ("SIMT")
- Due to memory latency effects, 1D FFTs are MUCH FASTER than 3D FFTs ...

Ritchie, Kozakov, Vajda (2008), Bioinformatics, 24, 1865-1873
Ritchie, Venkatraman (2010), Bioinformatics, 26, 2398-2405

The CUDA Device Architecture

- Typically 8-16 multi-processor blocks, each with 16 thread units

- NB. only a very small amount of fast shared memory is available
- NB. global memory is ABOUT 80x SLOWER than shared memory

An Alternative View of the CUDA Device Architecture

- Reading and writing global memory is like doing slow I/O

- Strategy: aim for "high arthmetic intensity" in fast shared memory

Slow Devices are Not Well Suited for Random Access

- On the GPU, think of global memory as a SLOW device ...
- ... and that accessing array data "against the grain" is like random access

- This explains why 3D FFTs are SLOW on current GPUs...
- Good strategies:
- avoid unnecessary "I/O" on global memory
- make threads cooperate by reading consecutive blocks of global memory linearly
- do "random access" (e.g. to transpose a matrix) only in shared memory

The CUDA Grid-Block Programming Model

- CUDA implements SIMT using a GRID of BLOCKS of THREADS
- Each THREAD executes a simple "kernel" function
- A BLOCK of related threads all execute the same kernel
- The scheduler launches multiple blocks in parallel, making a GRID of blocks

- For example, in matrix arithmetic:
- the matrix is divided into a grid of blocks
- one thread calculates one element of the result

CUDA Programming Example - Matrix Multiplication

- Matrix multiplication $\mathrm{C}=\mathrm{A} * \mathrm{~B}$
- Each thread is responsible for calculating one element: $\mathrm{C}[i, k]$

- Conventional algorithm: rows and columns
- $\mathrm{C}[\mathrm{i}, \mathrm{k}]=\mathrm{A}[\mathrm{i}]$ * $\mathrm{B}[\mathrm{k}]$
- Thread-block algorithm working on TILES
- A tile size of 16×16 is just right!
- Threads co-operate by reading \& sharing tiles of A \& B
- Multi-processor launches multiple blocks to compute all of C
- Executing thread-blocks concurrently hides global memory latency

```
    CUDA Programming Example - Matrix Multiplication Kernel
__global__ void matmul(int wA, int wB, float *A, float *B, float *C)
{
    float Cik = 0.0; // thread-local result variable
    int bx = blockIdx.x, tx = threadIdx.x; // thread subscripts
    int by = blockIdx.y, ty = threadIdx.y; // ("this" thread is one of a 2-D grid)
    __shared__ float a_sub[16] [16], b_sub[16] [16]; // declare shared memory
    for (int j=0; j<wA; j+=16) { // thread-local loop over tiles of A and B
        int ij = (16*by+ty)*wA + (j+tx); // thread-local array subscripts
        int jk = (j+ty)*wB + (16*bx+tx);
        a_sub[ty][tx] = A[ij]; // copy global data to shared memory ("I/O")
        b_sub[ty][tx] = B[jk];
        __syncthreads(); // wait until all memory I/O has finished
        for (int jj=0; jj<16; jj++) {
            Cik += a_sub[ty][jj] * b_sub[jj][tx]; // multiply row*column in current tiles
        }
        __syncthreads(); // synchronise threads before starting more I/O
    }
    C[(16*by+ty)*wB + (16*bx+tx)] = Cik; // copy local result -> global memory
}
```


Hex GPU Docking - Rotate and Translate Protein A

1. On CPU, calculate multiple $\left(\beta_{A}, \gamma_{A}\right)$ rotations of protein A
2. On CPU, re-index translation matrices and rotated coefficients into regular sparse arrays
3. On GPU, translate multiple protein A coeffcients using tiled matrix multiplication

Hex GPU Docking - Perform Multiple 1D FFTs

- Next, calculate multiple 1D FFTs of the form:

$$
S_{A B}\left(\alpha_{B}\right)=\sum_{m} e^{-i m \alpha_{B}} \sum_{n l} A_{n l m}^{\sigma}\left(\boldsymbol{R}, \boldsymbol{\beta}_{A}, \gamma_{A}\right) \times B_{n l m}^{\tau}\left(\beta_{B}, \gamma_{B}\right)
$$

4. On GPU, cross-multiply transformed A with rotated B coefficients (as above)
5. On GPU, perform batch of 1D FFTs using cuFFT and save best orientations

- 3D FFTs in $\left(\alpha_{B}, \beta_{B}, \gamma_{B}\right)$ can be calculated similarly, ...

Results - GPU v's CPU Docking Performance

- Key Hex functions implemented using only 5 or 6 CUDA kernels
- 1D and 3D FFTs are calculated using Nvidia's cuFFT library
- Here, GPU $=$ Nvidia FX-5800, CPU $=$ Intel i7-965

- Hex 1D correlations are up to $100 x$ faster on FX-5800 than on iCore7
- Overall, including set-up, Hex 1D FFT is about 45x faster on FX-5800 than on iCore7

Protein Docking Speed-Up using Multiple GPUs and CPUs

- With multi-threading, we can use as many GPUs and CPUs as are available

- For best performance: use 2 GPUs alone, or 6 CPUs plus 2 GPUs
- With 2 GPUs, docking takes about 10 seconds - very important for large-scale!

Speed Comparison with ZDOCK and PIPER

- Hex: 52000×812 rotations, 50 translations ($0.8 \AA$ steps)
- ZDOCK: 54000×6 deg rotations, $92 \AA \AA$ 3D grid ($1.2 \AA \AA$ cells)
- PIPER: 54000×6 deg rotations, $128 \AA$ 3D grid ($1.0 \AA ̊$ cells)
- Hardware: GTX 285 (240 cores, 1.48 GHz)

	Kallikrein A /					
	BPTI (233 $/ 58$ residues) \#					
	ZDOCK	PIPER †	PIPER †	Hex	Hex	Hex ‡
FFT	$1 \times C P U$	$1 \times C P U$	$1 \times G P U$	$1 \times$ CPU	$4 \times$ CPU	$1 \times G P U$
3D	7,172	468,625	26,372	224	60	84
(3D)	$(1,195)$	$(42,602)$	$(2,398)$	224	60	84
1D	-	-	-	676	243	15

\# execution times in seconds

* (times scaled to two-term potential, as in Hex)
- Several other bioinformatics applications also run well on GPUs - See:
- https://biomanycores.org/
- http://www.nvidia.com/object/bio_info_life_sciences.html

"Hex" and "HexServer"

- Multi-threaded Hex: first (only) docking program to get full benefit of GPUs

- Hex: Over 25,000 down-loads, over 280 citations in bio literature...
- HexServer: About 1,000 docking jobs per month...

Ritchie, Kemp (2000) Proteins, 39, 178-194

Ritchie, Venkatraman (2010) Bioinformatics, 26, 2398-2405
Macindoe et al. (2010), Nucleic Acids Research, 38, W445-W449

Conclusions

- There is an increasing number of on-line resources for studying PPIs
- Docking is becoming increasingly important for modeling PPIs
- CAPRI experiment has stimulated the development of docking algorithms
- The spherical polar Fourier representation is useful for protein docking
- Rigid-body protein docking on a GPU now takes only a few seconds
- This was implemented using only 5 or 6 GPU kernels
- But a lot of low-level CPU code had to be re-written
- Worth the effort - rigid body docking is no longer a rate-limiting step
- Fast docking could open the door for other shape matching problems ?
- Cryo-EM density fitting ?
- 3D Virtual screening ?

Extra Slides

CUDA Matrix Multiplication Kernel - Launching a GPU Kernel

- CUDA adds some programming "extensions" to support the grid-block model
- compile with "nvcc" compiler ...
- (here, we assume matrix dimensions are multiples of 16)

```
__host__ void matmul( // CPU launch function
    int wA, // width of array A (no. columns)
    int hA, // height of array A (no. rows)
    int wB, // width of array B (no. columns)
    float *A, // input array A (in global mamory)
    float *B, // input array B (in global mamory)
    float *C) // result array C (in global memory)
    dim3 dimBlock(16, 16, 1);
    dim3 dimGrid(wB/16, hA/16, 1);
    matmul<<<dimGrid, dimBlock>>>(wA, wB, A, B, C); // launch instances of kernel function
    (void) cudaThreadSynchronize(); // wait for kernel to finish
}
```


5D FFT Correlations from Complex Overlap Expressions

 (Ritchie, Kozakov, Vajda, (2008) Bioinformatics, 24, 1865-1873)Complex SHs, $\boldsymbol{Y}_{l m}: \quad \quad \boldsymbol{y}_{l m}(\boldsymbol{\theta}, \phi)=\sum_{t} \boldsymbol{U}_{m t}^{(l)} \boldsymbol{Y}_{l t}(\boldsymbol{\theta}, \phi)$
Complex coefficients:

$$
A_{n l m}=\sum_{t} a_{n l t} U_{t m}^{(l)}
$$

Complex overlap:
$S=\sum_{k j s m n l v} D_{m s}^{(j) *}\left(0, \beta_{A}, \gamma_{A}\right) A_{k j s}^{*} T_{k j, n l}^{(|m|)}(R) D_{m v}^{(l)}\left(\alpha_{B}, \beta_{B}, \gamma_{B}\right) B_{n l v}$

Collect coefficients:

$$
S_{j s, l v}^{(|m|)}(R)=\sum_{k n} A_{k j s}^{*} T_{k j, n l}^{(|m|)}(R) B_{n l v}, \quad k>j ; n>l
$$

To give:

$$
S=\sum_{j s m l v} D_{m s}^{(j) *}\left(0, \beta_{A}, \gamma_{A}\right) S_{j s, l v}^{(|m|)}(R) D_{m v}^{(l)}\left(\alpha_{B}, \beta_{B}, \gamma_{B}\right)
$$

Expand as exponentials:

$$
D_{m v}^{(l)}(\alpha, \beta, \gamma)=\sum_{t} \Gamma_{l v}^{t m} e^{-i m \alpha} e^{-i t \beta} e^{-i v \gamma}
$$

Hence:

$$
S=\sum_{j s m l v r t} \Gamma_{j s}^{r m} S_{j s, l v}^{(|m|)}(R) \Gamma_{l v}^{t m} e^{-i\left(r \beta_{A}-s \gamma_{A}+m \alpha_{B}+t \beta_{B}+v \gamma_{B}\right)}
$$

Translation Matrices From Fourier-Bessel Transform Theory

Using spherical Bessel transforms:

$$
\tilde{\boldsymbol{R}}_{n l}(\boldsymbol{\beta})=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \boldsymbol{R}_{n l}(r) j_{l}(\beta r) r^{2} \mathrm{~d} r ; \quad \quad \boldsymbol{R}_{n l}(r)=\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} \tilde{R}_{n l}(\beta) j_{l}(\boldsymbol{\beta} r) \beta^{2} \mathrm{~d} \beta
$$

it can be shown that

$$
T_{n^{\prime} l^{\prime}, n l}^{(|m|)}(\boldsymbol{R})=\sum_{k=\left|l-l^{\prime}\right|}^{l+l^{\prime}} A_{k}^{\left(l l^{\prime}|m|\right)} \int_{0}^{\infty} \tilde{\boldsymbol{R}}_{n l}(\boldsymbol{\beta}) \tilde{\boldsymbol{R}}_{n^{\prime} l^{\prime}}(\boldsymbol{\beta}) j_{k}(\boldsymbol{\beta} \boldsymbol{R}) \boldsymbol{\beta}^{2} \mathrm{~d} \boldsymbol{\beta}
$$

where

$$
A_{k}^{\left(l l^{\prime}|m|\right)}=(-1)^{\frac{k+l^{\prime}-l}{2}+m}(2 k+1)\left[(2 l+1)\left(2 l^{\prime}+1\right)\right]^{1 / 2}\left(\begin{array}{lll}
l & l^{\prime} & k \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{ccc}
l & l^{\prime} & k \\
m & \bar{m} & 0
\end{array}\right)
$$

- Can derive analytic formulae for both GTO and ETO radial functions
- Requires high precision math library (GMP)...
- Calculate once for $R=1,2,3, \ldots 50 \AA$ and store on disk ($\sim 200 \mathrm{Mb}$)

