
Kpax – Protein Structure Alignment

Dave Ritchie

Team Orpailleur
Inria Nancy – Grand Est

Outline

Overview of Protein Sequences and Structures

Structural Alignment Using Dynamic Programming

The Kpax Algorithm Explained

Demo: Using Kpax on Linux

Practical: Homology Modeling Using Kpax + Modeler

2 / 33

Protein Sequences and Structures

Source: ”The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku”,
F.A. di Fagagna et al., EMBO Reports (2003), 4, 47–52

3 / 33

Comparing Two Strings
Q. Suppose we have two strings, e.g. EXPONENTIAL and POLYNOMIAL.
How do we measure their similarity?

A1. In information theory, the edit distance measures the cost of
transforming one string into another using one-character edits

A2. Match 3 letters
POLYNOMIAL

|||

EXPONENTIAL
and then give a score for each pair...

Q. Suppose gaps are allowed. What is the best possible alignment?

A. How about
--POLYNOM-IAL

|| | |||

EXPO--NENTIAL
or

--POLYNOMIAL

|| | |||

EXPONEN-TIAL
?

Q. Which is better ?

A1. The second one? (6 matches + 3 gaps v’s 6 matches + 5 gaps)
A2. ... It depends on the score for each pair and the penalty for a gap

4 / 33

Dynamic Programming
Dynamic programming (DP) is a method of dividing a problem into smaller
sub-problems. It was first described by Richard Bellman in the 1940s. But
instead of using recursion, it uses a table (“memoisation” in 1940s language).

Goal: find similarity E (n,m) between two strings: x [1:n] and y [1:m]

Sub-goal: find E (i , j) between two prefixes: x [1:i] and y [1:j]

Observation: the best alignment must end on x [i]
y [j] or x [i]

− or −
y [j]

Method: build similarity table with scores S(i , j) and penalties P(i):

E (i , j) = max

E (i − 1, j − 1) + S(i , j)
E (i , j − 1)− P(i)
E (i − 1, j)− P(j)

Then, “trace back” from E (n,m) to E (1, 1) to extract the alignment

5 / 33

Back-Tracking Through The DP Scoring Table

E
X
P
O
N
E
N
T
I
A
L

0
1
2
3
4
5
6
7
8
9
10
11
12

P O L Y N O M I A L
p
p
p
p
p
p
p
p
p
p
p
p
p

p p p p p p p p p p p

0 1 2 3 4 5 6 7 8 9 1011

This gives the desired optimal alignment
--POLYNOMIAL

|| | |||

EXPONEN-TIAL

6 / 33

3D Least-Squares Fitting
Least-squares fitting finds the 3D rotation/translation matrix M that
minimises the sum of squared distances:

F =
N∑

i=1
(xA

i −M.xB
i)

2

For proteins, the x i are normally Cα atom coordinates
The translational part is easy – shift centres of mass to the origin
The rotation can be found using eigenvector or quaternion methods

The residual error (RMSD) is then given by

RMSD =

√√√√ 1
N

N∑
i=1

(xA
i −M.xB

i)
2

So, given list of aligned Cα’s, we can fit optimally to some RMSD

7 / 33

So, What’s The Problem?
DP is “perfect” for 1D string matching

Least-squares fitting is “perfect” for 3D superposition
BUT

Proteins are not made of 1D symbols or 3D points. They are made
of complex 3D chemical components (amino acid residues). It is
difficult to write a good scoring function to compare residues...

Similar 1D protein sub-sequences can have different 3D shapes
(α-helices, β-strands), i.e. global environment can affect local shape.
We don’t know a priori the right 1D pairings for 3D fitting...

Proteins are globally flexible. Even if many local 1D regions “match”,
not all of them might simultaneously superpose well in 3D space...

ADDITIONALLY!
Proteins can contain multiple repeats and/or transpositions...

8 / 33

Over 100 Structure Alignment Algorithms in 25 Years
http://en.wikipedia.org/wiki/Structural alignment software

90 more...

9 / 33

Quick List of Structural Alignment Approaches
“elastic” Gaussian scoring
“double dynamic programming” on Cα distance matrices
triples or higher fragments (8-tuples) of Cα atoms
backbone Cα vectors
backbone torsion angles
secondary structure elements
geometric hashing
Voronoi tessellations
structural alphabets
Lagrangian contact map optimisation
eigenvector analysis of distance matrices
Fourier correlations
Gaussian fragments
...

10 / 33

Introducing Kpax

http://kpax.loria.fr/

Dynamic programming with Gaussian scores
Uses NO sequence similarity OR secondary structure information

Very fast database search (CATH, SCOP, Pfam, ..., user-defined)
Rigid and flexible structural alignments
Multiple flexible alignments coming soon...

11 / 33

Defining Local Coordinate Frames
All Cα atoms have highly conserved tetrahedral geometry

Exploit this to define a “canonical” Cα–C–N orientation
e.g. put Cα at origin; C on -ve z axis; N in +ve xz plane

Now, ALL α-helices and β-strands look the same at the origin

12 / 33

Comparing Structural Fragments
In the canonical frame, similar structures have similar distances
between their up-stream and down-stream Cαatoms:

But how to combine all the distances into a single score?

13 / 33

Representing Local Geometry as a Product of Gaussians
Calculate Gaussian distribution of all Cα atoms in CATH

CATH

.. ..

...
. .
.

.
.
..
..
... .

...
.. .

.
. ..

.. ..
.
....
.. .

.
...
.
.
.
.. . .
. . ..
..

. .
...

.. ..

...
. .
.

.
.
..
..
... .

...
.. .

.
. ..

.. ..
.
....
.. .

.
...
.
.
.
.. . .
. . ..
..

. .
...

.
.
......
.
.. .

.
.

.
.

.
.

.

.
. ..
. ...

. ...
.

... .
..
. .
.

..

.

..

.
. ..
.

.

. ..
.

. .
. .

. ...
...

.
.
...

.

.
.

..
..
. .
.
... .

.
.
.. ..
.
.
..

. .
... .

.

.
. .

.

.
. .

.
..
.

.

..

.
.
......
.
.. .

.
.

.
.

.
.

.

.
. ..
. ...

. ...
.

... .
..
. .
.

..

.

..

.
. ..
.

.

. ..
.

. .
. .

. ...
...

.
.
...

.

.
.

..
..
. .
.
... .

.
.
.. ..
.
.
..

. .
... .

.

.
. .

.

.
. .

.
..
.

.

..

.
..
. .
. .

.

.

.....
.

.
..
. .
.

..

.

... .
..
. .
.

..

.

.. .

.
..
. .
.

..

.

.
. .

.
..
. .
.

. .

.

...
.
..
. .
.

..

.
.
.

.
.
..
. .
.

..

.

.

.

.
.
..
.
..

.
.
..

.
..

.

.

.
.
. .

.

.

.
..
. .
.

..

.

.
. .

.
.

.

.

.

.
.

.

.
..
. .
. .

.

.

.....
.

.
..
. .
.

..

.

... .
..
. .
.

..

.

.. .

.
..
. .
.

..

.

.
. .

.
..
. .
.

. .

.

...
.
..
. .
.

..

.
.
.

.
.
..
. .
.

..

.

.

.

.
.
..
.
..

.
.
..

.
..

.

.

.
.
. .

.

.

.
..
. .
.

..

.

.
. .

.
.

.

.

.

.
.

.

-3

-2

-1

+1

+2

+3

y

z

x

Gives Gaussian width σk for each up-stream and down-stream Cα
Then, represent residue i as a product of Gaussians:

ψi = φ−1
i (x i−1)φ

+1
i (x i+1) ... φ

−n
i (x i−n)φ

+n
i (x i+n)

each individual Gaussian function has the form:
φk

i (x i+k) = Nke−βk r2
k /2σ2

k

14 / 33

Calculating a Per-Residue Local Similarity Score

Calculate the local-frame similarity, K local
ij , as an overlap integral

K local
ij =

∫
ψiψj dx−n...+n.

With products of Gaussians, this reduces to a simple sum

K local
ij = e−

∑n
k=−n βkR2

i+k,j+k/4σ2
k ,

In identical α-helices, β-strands, and even loops, K local
ij = 1.

15 / 33

Detecting Secondary Structure Elements
By sliding a model α-helix and β-strand along a structure, Kpax detects
its secondary structure elements (SSEs) automatically (it does not
distinguish π or 310 helices or detect β-turns). Here are some examples:

Nice, but how to match correctly a short α-helix with a longer one?

16 / 33

The Spatial Similarity Score
If two similar protein domains are superposed, their centres of mass
(COM) will be close together. Therefore, in the local coordinate frame,
well-aligned residues will “see” the COM in similar positions in space (but
consecutive residues will see the COM in quite different positions).

From the COM direction vector, we get a spatial similarity score

K spatial
ij = e−

∑n
k=−n βkR2

i+k,j+k/4τ2
k

17 / 33

The Kpax Structure Alignment Algorithm
The “local” and “spatial” scores give a kind of “1D preview” of
how two proteins might be aligned without actually moving them

K 1D
ij = (K local

ij + K spatial
ij)/2

Once the proteins are superposed, we can calculate real 3D
Gaussian overlap scores for every pair of residues:

G3D
ij = e−R2

ij/4τ2

This leads to the following algorithm:
1 Set per-residue gap penalties according to SSE types
2 Apply DP to the K-scores to get the first correspondence
3 Fit some/all fragments by least-squares and superpose
4 Calculate 3D G-scores between close pairs of residues
5 Apply DP to the G-scores to get a new correspondence

18 / 33

Generating Fitting Fragments From The K-Scores
Blocks of high K-scores arise when SSEs detect each other:

γ
α
α
γ
β
β
β
γ
α
α
γ

γ α α γ β β β γ α α
0
pγ
pα
pα
pγ
pβ
pβ
pβ
pγ
pα
pα
pγ
0

pγpαpαpγpβpβpβpγpαpα 0

The alignment:

—
γ
|

γ
—

αα
| |

αα
—

γ
|

γ
—

βββ
| | |

βββ
—

γ
|

γ
—

αα
| |

αα
—

-

|

γ
—

Next, use the pairs within each blue block as fitting candidates...

(γ means “loop”)

19 / 33

Scoring Trial Superpositions Using G-Scores
Evaluate each trial superposition using real 3D coordinates (G-scores):

0
0
0
0
0
0
0
0
0
0
0
0
0

0 0 0 0 0 0 0 0 0 0 0

The aligned residues:

—
γγγ
AGQ

|||

LPD

—
αααα
LLADA

|||||

LKVYA

—
γγ
QN

||

QR

—
ββββββ
RGDYWSD

|||||||

GADFWLA

— ------PDAGV

QRSLKV-----

—

(no gap penalties)

20 / 33

Example 1: Aligning Ubiquitin and Ferrodoxin I

TM-Align: 63 residues aligned, Cα RMSD = 2.6Å
Kpax-1.0: 45 residues aligned, Cα RMSD = 2.0Å

My claim: Kpax gives a tighter alignment than TM-Align

21 / 33

Example 2: methyl dehydroxygenase / galactose oxidase

The SCOP domains d4aaha and d1gofa3
TM-Align: 336 residues aligned, CαRMSD = 5.4Å
Kpax-1.0: 178 residues aligned, CαRMSD = 3.9Å
Difference: 11.6 Å RMSD

... I believe the Kpax alignment is correct!

22 / 33

Building and Searching Structural Databases

Before calculating an alignment, Kpax pre-processes each protein
separately. The pre-processed data can be stored to make a
structural database... NB. It takes more time to read a PDB file
than to do an alignment !

Shift the protein to put its COM at the world origin
Calculate 6 local and 6 spatial “atom” coordinates per residue
Determine the SSE type of each residue
Save this data and original PDB coords as binary “blobs”
Use Linux “memory mapping” to read a binary database
Use Posix threads to do all calculations in parallel

Result: Searching 11,000 CATH structures takes about 4 seconds...

23 / 33

ROC-Plot Comparison with TM-Align and Yakusa

We selected 213 CATH families, each having ≥ 10 members
Searched CATH database with one structure from each family

TP (true pos) when [C.A.T.H] code of query matches database
FP (false pos) when query matches some other CATH code

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

False positive rate

T
ru

e
 p

o
s
it

iv
e
 r

a
te

TM−Align
Kpax
Yakusa
random

TM-align AUC = 0.976, Kpax AUC = 0.966, Yakusa AUC = 0.915
TM-align 46 h; Yakusa 2.2 h; Kpax 0.3h (i.e. Kpax is 150x / 6x faster)

24 / 33

Flexible Alignment – Finding More Fitting Fragments
For flexible alignment, just fill in the remaining boxes:

γ
α
α
γ

γ α α

0 pγpαpα 00
pγ
pα
pα
pγ
0

Candidate fitting fragments:

—
γ
|

γ
—

αα
| |

αα
—

-

|

γ
—

25 / 33

The Final Flexible Alignment
After a further round of DP, we get the final “flexible” alignment:

0
0
0
0
0
0
0
0
0
0
0
0
0

0 0 0 0 0 0 0 0 0 0 0

NB. the 3D structure may have discontinuities between the fitted segments:

—
γγγ
AGQ

|||

LPD

—
αααα
LLADA

|||||

LKVYA

—
γγ
QN

||

QR

—
ββββββ
RGDYWSD

|||||||

GADFWLA

–?–
γ
P

|

Q

—
ααα
DAG

|||

RSL

—
γγ
-V

|

KV

—

26 / 33

Example 1 Revisited – Flexible Kpax
ubiquitin (green) and ferrodoxin I (blue)

Kpax-1.0: 45 residues aligned, Cα RMSD = 2.0Å (rigid)
Kpax-2.2: 57 residues aligned, Cα RMSD = 2.8Å (rigid)
Kpax-2.2: 56 residues aligned, Cα RMSD = 2.2Å (flexible)

Rigid superposition: white = anchor; yellow = aligned
Flex superposition: (re-fitted anchors, new segment in orange)

27 / 33

Example 2 Revisited – Flexible Kpax
d4aaha and d1gofa3 (looking directly at the β-propeller)

Kpax-1.0: 178 residues aligned, CαRMSD = 3.9Å (rigid)
Kpax-2.2: 218 residues aligned, CαRMSD = 3.2Å (rigid)
Kpax-2.2: 260 residues aligned, CαRMSD = 1.7Å (flexible)

Rigid superposition: white = anchor; yellow = aligned
Flex superposition: 20 segments (anchor in white)

28 / 33

Aligning Human and Fly Calmodulin
Calmodulin (Ca-binding protein) is found in all eukaryotic cells

Green = 1CLL (human: homo sapiens)
Blue = 2BBM (fly: dropsophila melanogaster)

Both superpositions have 4 segments (137 residues, 1.7 Å RMSD)

29 / 33

Human Blood Factor and a Parasite Surface Protein
Green = 1DAN (human blood coagulation factor VIIA)
Blue = 1B9W (Plasmodium cynomolgi merozoite surface protein)

4/4 segments, 70/77 residues, 18/19 identities, 1.8/1.9 Å RMSD

30 / 33

Multiple Flexible Alignments and Modeling
Multiple Structural Alignments (unpublished)

Kpax 4.0 uses “pile-up” method for multiple alignments
Choose “centre” or “pivot” structure; fit the rest on to it
Also works with flexible alignments to the pivot

Automatic Homology Modeling Pipeline (unpublished)
Use a protein sequence as the search query...
... find the structure with the closest sequence and use as “pivot”
Perform a structural search using pivot as query...
... make multiple structural alignment of closest hits
Generate Modeler command script automatically :-)

Worked Example – Cyp450
kpax -db=cyp450 -model -show=20 my secret cyp.fasta

31 / 33

Conclusion and Future Prospects

Conclusions

Tight high quality structural alignments
Fast structural databases searches
Flexible alignments now possible
Multiple alignments now possible
All-versus-all structural comparisons now possible

Future Prospects

Better structural alignments → better holomology models...
Should help study evolutionary relationships at structural level ...

32 / 33

Thank You!

Acknowledgments
Anisah Ghoorah
Lazaros Mavridis

Vishwesh Venkatraman
April Chung

Niruba Thiagarajan

33 / 33

Program and paper:
http://kpax.loria.fr/

Kpax Demo – Basic Operations
Download Kpax from: http://kpax.loria.fr/download-3.2-beta/

Example pairs of structures: http://hex.loria.fr/emmsb/kpax examples/

Aligning two structures
Viewing the results in Hex and VMD
Performing flexible structural alignments
Building and searching a structural database
Performing multiple structural alignments
Viewing multiple alignments in Hex/VMD
...
Ask me!

Disclaimer: Kpax is not “commercial” software!

34 / 33

Practical Activities – 1
Downloading the data

Download the API-A sequence from: http://hex.loria.fr/emmsb/t40.tgz
t40 c.fasta (API-A)

Download the CATH database from: http://hex.loria.fr/emmsb/cath/
CathDomainPdb.S35.v3 4 0.tgz (260 Mb of compressed PDB files)
CathDomainList.gz (1.3 Mb file of CATH codes)
build cath.sh (shell script to build a Kpax database)

Building a Kpax database
Unzip the two zip files (use gunzip)
Edit the script to have the correct path to the data (CATH ROOT=???)
Run the script to build that database (takes a few minutes)
Run kpax with -help option to show all the parameters and options; try:

kpax -db=cath -list

35 / 33

Practical Activities – 2
Searching a database and visualising the results

Try searching the database with t40 c.pdb as the query
Go to the results folder (kpax results/t40 c) and look at the results files
Use Hex or VMD to visualise the results (.mac for Hex and .tcl for VMD)
Do you agree with the superpositions?

Making a MSA for homology modeling
Run kpax to make a multiple structure alignment from the seed sequence
The command for this is of the form:

kpax -db=cath -model -top=24 t40 c.fasta
cd to the results folder (kpax results/2qn4A00) and examine the contents

Making a homology model (optional)
Run Modeler (the actual command may differ on your machine):

/opt/modeller/bin/mod9.13 t40 c modeller.py
Use Kpax/Hex to compare the model and real structure (t40 c.pdb)

36 / 33

