

KBDOCK – A Case-Based Reasoning Approach for Protein Docking

Dave Ritchie

Team Orpailleur Inria Nancy – Grand Est

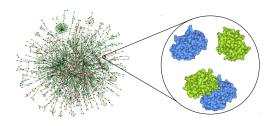
Outline

Basic Difficulties of Modeling PPIs by Docking

The Need to Classify Existing Interactions

The KBDOCK Case-Based Reasoning Approach

KBDOCK Performance on Selected CAPRI Targets


Demo: Using the KBDOCK Server to Explore DDIs

Practical: Modeling API-A/Trypsin and a TIM-barrel complex

The Protein Interactome

- There probably exist about 25,000 protein-protein interactions
- 3D crystal structures exist for only about 4% of these...
- Can we use existing structures to model unknown interactions?

A Case-Based Reasoning Approach

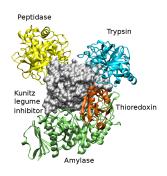
• PhD thesis project of Anisah Ghoorah (2009–2012)

Difficulties of Modelling 3D PPIs

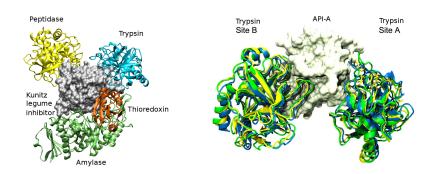
Ab initio docking algorithms

- Produce thousands of candidate solutions
- Hard to identify acceptable solutions
- Additional challenge: to model protein flexibility

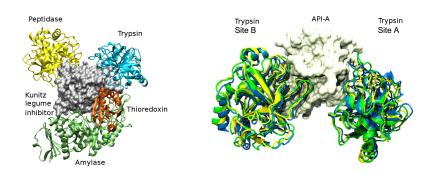
Template-based approaches


- Need a lot of effort to find suitable templates
- Require full-length templates to exist
- Fail when no templates are available

- We searched SCOPPI and 3DID for similar 3D interactions
- This helped to identify two inhibitory loops on API-A

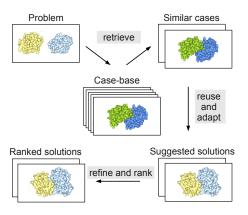


- We searched SCOPPI and 3DID for similar 3D interactions
- This helped to identify two inhibitory loops on API-A

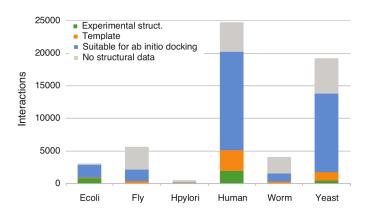

- We searched SCOPPI and 3DID for similar 3D interactions
- This helped to identify two inhibitory loops on API-A

• Using Hex + MD refinement gave NINE "acceptable" solutions

- We searched SCOPPI and 3DID for similar 3D interactions
- This helped to identify two inhibitory loops on API-A



- Using Hex + MD refinement gave NINE "acceptable" solutions
- Anisah's mission: How to automate all this?


Modelling 3D Protein Complexes by Homology

• Case-based reasoning for 3D protein complexes

Current Structural Coverage of PPIs

 Only 8% of the known human PPIs have a 3D structure Stein et al., Curr Opin Struct Biol, 2011

Structural PPI Databases

- There are many ways of representing 3D interfaces
- No unique way to quantify whether two interfaces are similar

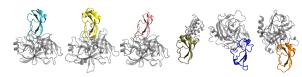
Classification	DDIs	Distinct
		Interfaces
Davis and Sali, 2005 (Pibase)	20,912	18,755
Kim et al., 2006 (Scoppi)	10,080	5,727
Keskin et al., 2004	21,686	3,799
Aung et al., 2008 (PPiClust)	2,634	1,716
Shulman-Peleg et al.,2004	64	22

- Can we use such databases for knowledge-based docking?
- How many distinct interface types really exist?

The Need for a Structural Classification of DDIs

• Pfam classifies sequences into domain families

- Families of similar sequences often have similar structures
- CATH and SCOP classify structures into structural families



KBDOCK introduces domain family binding sites (DFBSs)

KBDOCK – Aims and Objectives

- Create a framework to support large scale analyses of protein binding site and interface features
- Use this framework to classify 3D interactions in a compact and re-usable way
- Use this classification as a systematic way to reuse and exploit structural knowledge of existing PPIs to facilitate 3D PPI modelling
- Provide a structural interaction search engine to facilitate 3D
 PPI modelling, in particular, docking by homology

KBDOCK Statistics

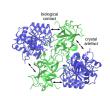
PDB

• Protein Data Bank – \sim 85,000 protein structures (june 2013 snapshot)

Pfam

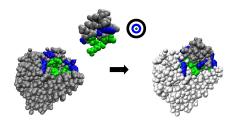
- Database of protein domain families
- Uses multiple sequence alignments to define domains
- Based on UniProt database
- Contains 14,831 domain families
- Of which, 6,516 have 3D structures in the PDB

KBDOCK


- Uses Pfam to define domains
- Extracts all DDIs from PDB files
- Some statistics:
 - 231,405 PDB total chains
 - 288,309 total domains
 - 239,494 total DDIs
 - 12,498 inter-chain homo DFBSs
 - 4.001 inter-chain hetero DFBSs
 - 3,021 intra-chain hetero DFBSs
 - 745 intra-chain homo DFBSs
 - 1,213 domain-peptide interactions

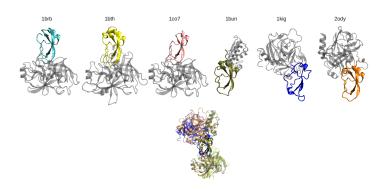
Collecting and Annotating Hetero DDIs

Given a PFAM domain of interest:

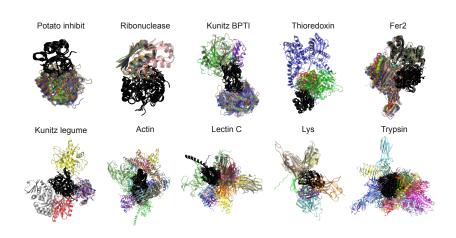

- Classify DDIs into intra, homo and hetero interactions
- Distinguish biologically relevant interactions from crystal contacts
- Eliminate duplicate or near-duplicate interactions
- Identify conserved residue positions to guide multiple structural alignments

Identifying Core and Rim Residues

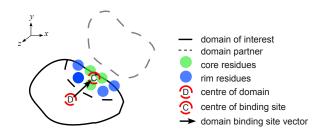
- Core and rim residues form a "target"
- Core residues lose 75% of its accessible surface area in the complex
- Rim residues lose less than 75%


Chakrabarti and Janin, Prot Struct Funct Genet, 2002

Superposing DDIs in 3D Space – E.g. Kunitz BPTI

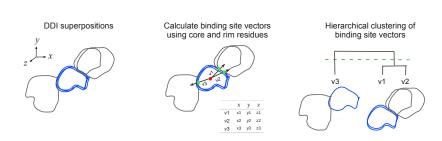

For each Pfam domain family:

- Place all members and their interaction partners in a common frame
- Use conserved residue positions to guide structural alignment
- This reveals the overall spatial distribution



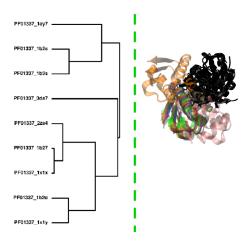
Ten Selected Domain Family Superpositions

Defining Binding Site Direction Vectors

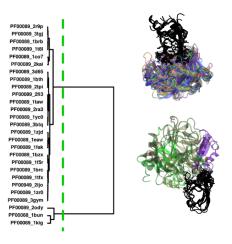


- D_i = centre of mass of domain
- C_i = geometric centre of binding site
 - calculated as a weighted average of 75% core and 25 % rim residues
- $D_i = \frac{\vec{C}_i \vec{D}_i}{|\vec{C}_i \vec{D}_i|} = \text{binding site direction vector}$

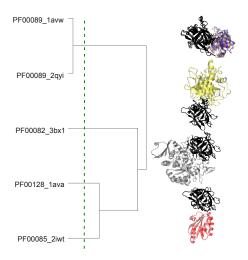
Defining Domain Family Binding Sites


- Spatial clustering of binding site direction vectors
- Ward's hierarchical clustering using Euclidean distance as metric

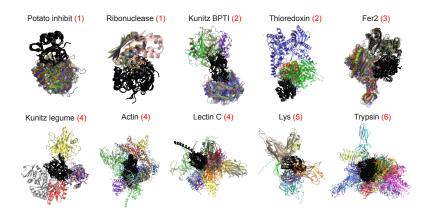
• Each cluster obtained defines a domain family binding site (DFBS)


Ribonuclease Family Has Only One Binding Site

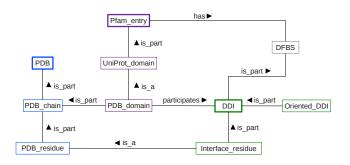
• 9 hetero DDIs involving one distinct Pfam partner


Kunitz BPTI Has Two Binding Sites

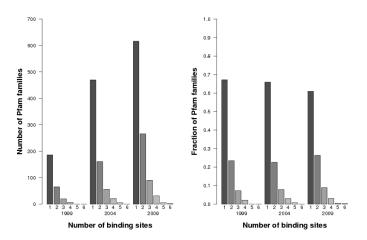
• 27 hetero DDIs involving 2 distinct Pfam partners


Kunitz Legume Family Has Four Binding Sites

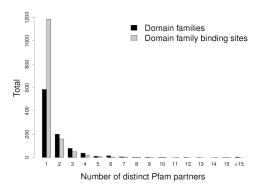
• 5 hetero DDIs involving 4 distinct Pfam partners


Calculated No. DFBSs for 10 Pfam Families

The KBDOCK Database

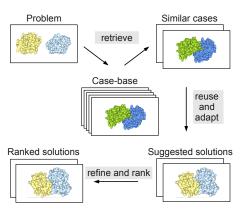

- Stores 3D DDIs by Pfam family in a MySQL database
- Statistics: 1,035 Pfam families, 2,721 NR hetero DDIs, 1,637 DFBSs

- Prolog engine for complex queries
- PHP-based web interface (http://kbdock.loria.fr)


Number of DFBSs per Domain Family

- Nearly 70% of protein domain families have just one binding site
- Number of DFBS remains constant despite the growth of Pfam families

Number of Pfam Partners per DFBS



- Some 60% of Pfam families interact with just one Pfam family
- Over 80% of DFBSs interact with just one Pfam family
- 1,009 DFBS-DFBS interactions or domain-family interactions (DFIs)

Using KBDOCK for Case-Based Docking

To use knowledge of related PPIs to help predict unknown PPIs

KBDOCK Case Representation

PDB Deposition date	1avw 27-Sep-97	Structure	#
Expt. Technique	X-ray diffraction	Resolution	1.75 Å
Chain_1 Sequence_1 PfamID_1 PfamAC_1 Region_1 BindingSite_1 BS_res_1 BS_centre_res_1 BS_centre_xyz_1	A IVGGYTCAANSI Trypsin PF00089 16-238 2 {Phe-502,} Ser-195 (X. V. Z)	Chain_2 Sequence_2 PfamID_2 PfamAC_2 Region_2 BindingSite_2 BS_res_2 BS_centre_res_2 BS_centre_xyz_2	

- c(d1/b1, d2/b2) represents a DDI instance in the case base
 - d1/b1 means "DFBS b1 on domain family d1"
- c('PF00089'/'2', 'PF00197'/'1') identifies the above case

KBDOCK Case Retrieval

- Prolog notation
 - Lowercase for instantiated terms ('atoms')
 - Uppercase for uninstantiated terms ('variables')
- q(d1/B1, d2/B2) denotes a new problem (query)
 - d1 and d2 are always instantiated
- Case unification

```
\begin{array}{ll} \text{If} & c(d1/B1,d2/B2) \in \textit{CB} \\ \text{Then} & \textit{q} \text{ is a full-homology case (FH)} \end{array}
```

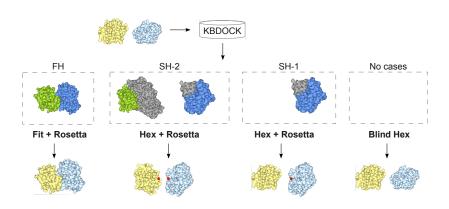
Else if $c(d1/B1, D2/B2) \in CB$ and $c(D1/B1, d2/B2) \in CB$ where $D1 \neq d1$, $D2 \neq d2$ Then q is a semi-homology-two case (SH-two)

```
Else if c(d1/B1, D2/B2) \in CB or c(D1/B1, d2/B2) \in CB where D1 \neq d1, D2 \neq d2
Then q is a semi-homology-one case (SH-one)
```

Else q does not unify with any cases – no homology

Retrieval of FH, SH-two and SH-one Cases

- 73 single-domain targets from Protein Docking Benchmark 4.0
- Excluding structures which have been solved after the target


Target	Total	FH	SH-two	SH-one	No
class	targets	targets	targets	targets	templates
No date f	filtering				
Enzyme	36	<mark>24</mark> / 24	(3+1) / 5	<mark>3</mark> / 5	2
Other	37	<mark>21</mark> / 21	(0 + 0) / 3	<mark>5</mark> / 11	2
Total	73	<mark>45</mark> / 45	(3+1)/8	8 / 16	4
With date	e filtering				
Enzyme	36	13 / 13	(2+1) / 5	<mark>7</mark> / 11	7
Other	37	13 / 13	(0 + 0) / 1	<mark>8</mark> / 15	8
Total	73	<mark>26</mark> / 26	(2+1)/6	15 / 26	15

Ghoorah et al. (2011), Bioinformatics, 27, 2820-2827

The KBDOCK Docking Pipeline

- Hex for focused rigid-body docking (keep top 200)
- RosettaDock for side-chain re-packing (refine 200x100)

Docking Benchmark Results - Full-Homology Cases

• Data set: 54 single-domain benchmark targets

• 24 FH, 4 SH-two and 26 SH-one cases

Target PDB	Туре	KBDOCK only		KBDOCK+Rosetta		Blind Hex	
1cgi	Е	1	5.8	1	6.5	9.1	2
1n8o	E	1	8.5	2	9.2	_	_
2sni	E	1	5.7	1	4.5	_	_
1gpw	0	1	3.8	1	5.6	8.8	5
1grn	0	1	6.4	2	2.0	_	-
3cph	0	1	9.4	1	8.9	_	_

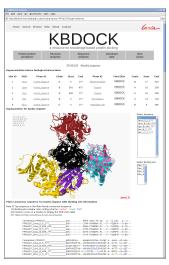
Results summary for 24 FH cases

	KBDOCK only	KBDOCK+Rosetta	Blind Hex
Total	23/24	21/24	6/24
Avg. RMSD	8.7	5.7	8.2
Avg. Rank	1	2	4
Avg. Time (min)	2	50	3

Docking Benchmark Results - Semi-Homology Cases

26 SH-one and 4 SH-two cases

Target PDB	Туре	Focused Hex		Hex+Rosetta		Blind Hex	
SH-one targe	ts						
1fle	Ε	1	7.0	1	5.6	_	-
1gl1	E	8	8.1	82	7.9	6	7.3
1ppe	Ε	1	3.5	1	3.7	1	3.3
1lfd	0	48	8.6	_	-	_	_
SH-two targe	ts						
1r0r	Е	2	7.3	6	4.8	61	9.9
1acb	Е	1	8.6	8	7.6	-	-


Results summary for 30 SH cases

	Focused Hex	Hex+Rosetta	Blind Hex
Total	8/30	5/30	6/30
Avg. RMSD	6.8	5.0	6.8
Avg. Rank	2	3	3
Avg. Time (hour)	0	175	0

KBDOCK Web Server - http://kbdock.loria.fr

Ghoorah et al. (2014), Nucleic Acids Research, 42, D389-D395

Conclusions - Docking by Case Based Reasoning

- KBDOCK introduces the notion of domain family binding sites
- KBDOCK describes 213,954 Pfam domains using 6,516 domain families
- All 3D hetero PPIs (june 2013) can be described by 4,001 DFBSs and 2.517 DFIs
- All 3D homo PPIs can be described by 12,498 DFBSs and 4,443 DFIs
- DFBSs provide a direct and easy way to do docking by homology
- FH templates usually give very high quality models
- SH templates can provide useful information for docking
- RosettaDock refinement can improve RMSD, but is very expensive
- We need a new benchmark set for docking by homology?

Acknowledgments

Anisah Ghoorah

Agence Nationale de la Recherche (ANR)

Programs and papers:

http://hex.loria.fr/ http://kbdock.lo<u>ria.fr/</u>

KBDOCK Demo - Basic Operations

- KBDOCK web site: http://kbdock.loria.fr/
- Browsing domain-domain interactions
- Viewing DDI networks
- Structural superpositions in Jmol (or JsMol)
- Structure-based sequence alignments
- Looking at structural neighbours
- Downloading structural templates
- ...
- Using Kpax (again) to superpose targets onto templates
- ..
- Ask me!

Practical Activities – 1

Finding domain interactions involving API-A

- Download the API-A data from: http://hex.loria.fr/emmsb/t40.tgz
 - t40_c.fasta (sequence), t40_c.pdb (structure)
- Use KBDOCK to find the Pfam domain for this sequence
 - Tip: the Search page allows pasting a sequence or uploading a structure
- View some representative inter-chain hetero interactions
- Can you identify LEU-87 and LYS-145 on API-A?
 - ullet Tip: In Jmol right-mouse for Menu; then: Set Picking o Identity

Downloading the template structures

- Download and uncompress all hetero interaction partners
 - (this should give a folder called PF00197)
- Delete the 3e8l structure this is the solution structure!

Practical Activities – 2

Modeling API-A/Trypsin by structural homology

- Use Kpax to superpose one of the Trypsin complexes onto t40_c.pdb
 - Tip: in Kpax, the "query" never moves; only the "target(s)" move(s)
- (this should give a very good template for one of the binding modes)
- For the other mode, superpose Peptidase S8 complex (1bx1) onto t40_c.pdb
- Use Hex to identify the API-A loop that interacts with Peptidase S8
- Use Hex again to place a Trypsin active site around this loop...
- Refine your proposed docking pose using a focused docking search in Hex

Practical Activities – 3

Modeling a bi-enzyme complex using structural neighbours

In our paper (Ghoorah et al. 2014, NAR, 42, D389–D395), we proposed that a GATase/ImGP cyclase complex (PDB code 1GPW, Pfam codes PF00117, PF00977) could be modeled using a complex from structural neigbours found by Kpax (PDB code 2NV2, Pfam codes PF01174, PF01680). Here, your task is to verify that the proposed model is structurally reasonable.

- Download the data provided: http://hex.loria.fr/emmsb/gatase.tgz
- Look at Figure 3 of the paper (PDF file)
- Use KBDOCK to search for structural neighbours of 1GPW
- Verify that a proposed complex is indeed 2NV2
- Using the given PDBs, use Kpax to superpose one complex onto the other
- Tip: Kpax can move two structures with one superposition using:
 - kpax -ligand query.pdb target.pdb ligand.pdb
- Tip: You can put two structures into one file using a shell command:
 - cat file_a.pdb file_b.pdb >file_ab.pdb

