

Hex – Modeling Protein Docking Using Polar Fourier Correlations

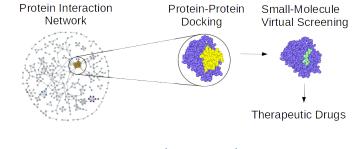
Dave Ritchie

nría

Team Orpailleur Inria Nancy – Grand Est

Outline Basic Principles of Docking Fast Fourier Transform (FFT) Docking Methods

Hex Polar Fourier Correlation Method Explained

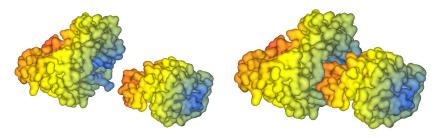

The CAPRI Experiment

Demo: Using Hex on Linux

Practical: CAPRI Target 40 – API-A/Trypsin

Biological Importance of Protein-Protein Interactions Protein interactions (PPIs) are central to many biological systems

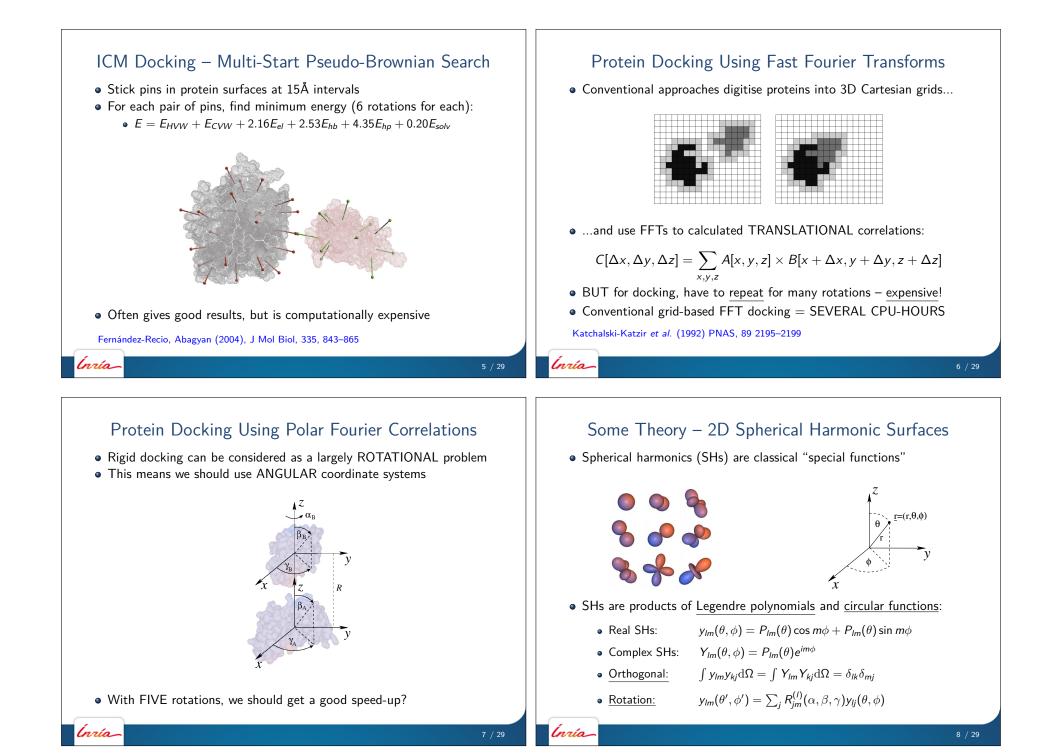
Humans have about 30,000 proteins, each having about 5 PPIs
Understanding PPIs could lead to immense scientific advances

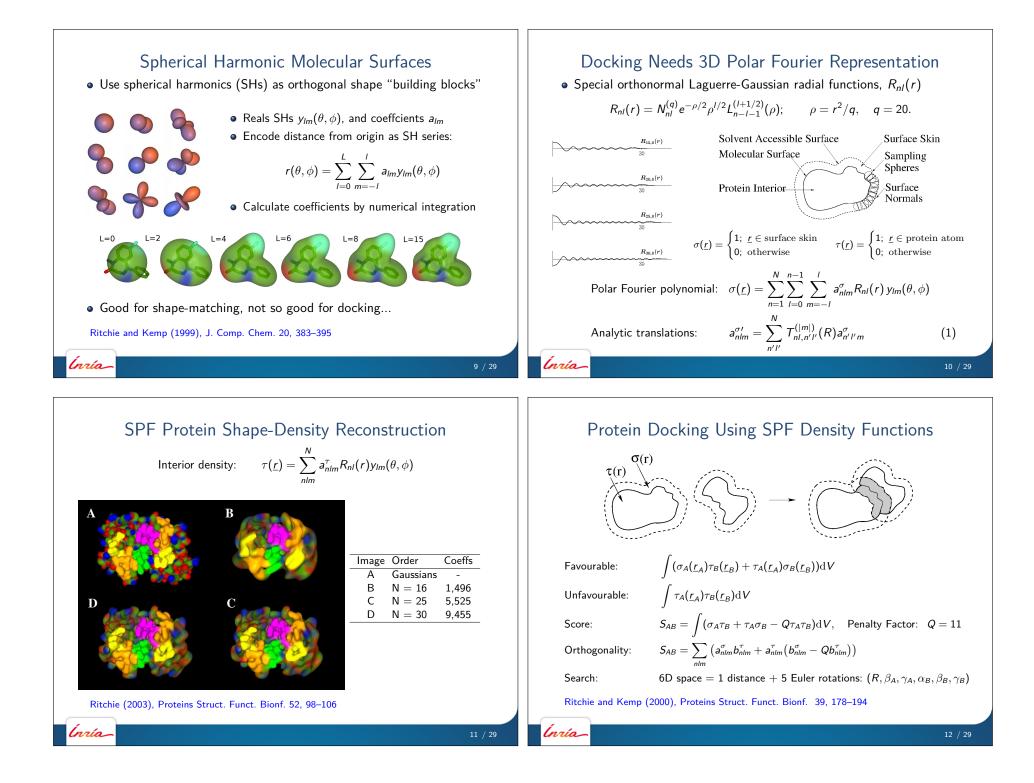


Protein-protein interactions as therapeutic drug targets

• Small "drug" molecules often inhibit or interfere with PPIs

Protein Docking - A Molecular Recognition Problem

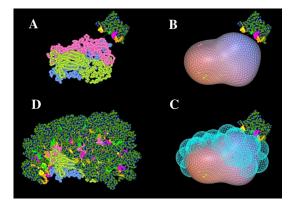

• A six-dimensional puzzle – do these proteins fit together?




• Yes, they fit!

Inría

- It is mostly a rotational problem: ONE translation plus FIVE rotations...
- But proteins are flexible => multi-dimensional space!
- So, how to calculate whether two proteins recognise each other?

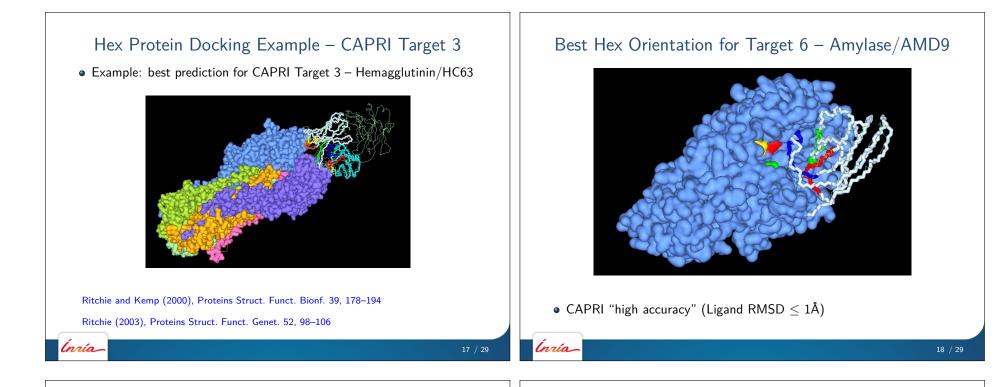


Docking Very Large Molecules Using Multi-Sampling

• Example: docking an antibody to the VP2 viral surface protein

Inría

The CAPRI Experiment


• CAPRI = "Critical Assessment of PRedicted Interactions"

Predictor	Software	Algorithm	T1	T2	T3	T4	T5	T6	T7
Abagyan	ICM	FF			**			***	**
Camacho	CHARMM	FF	*					***	***
Eisenstein	MolFit	FFT	*	*					***
Sternberg	FTDOCK	FFT		*				**	*
Ten Eyck	DOT	FFT	*	*				**	
Gray		MC						**	***
Ritchie	Hex	SPF			**			***	
Weng	ZDOCK	FFT		**					**
Wolfson	BUDDA/PPD	GH	*						***
Bates	Guided Docking	FF	-	-	-				***
Palma	BIGGER	GF	-		-			**	*
Gardiner	GAPDOCK	GA	*	*	-	-	-	-	-
Olson	Surfdock	SH	*			-	-	-	-
Valencia		ANN	*	-	-	-	-	-	-
Vakser	GRAMM	FFT		*		-	-	-	-

* low, ** medium, * * * high accuracy prediction; - no prediction

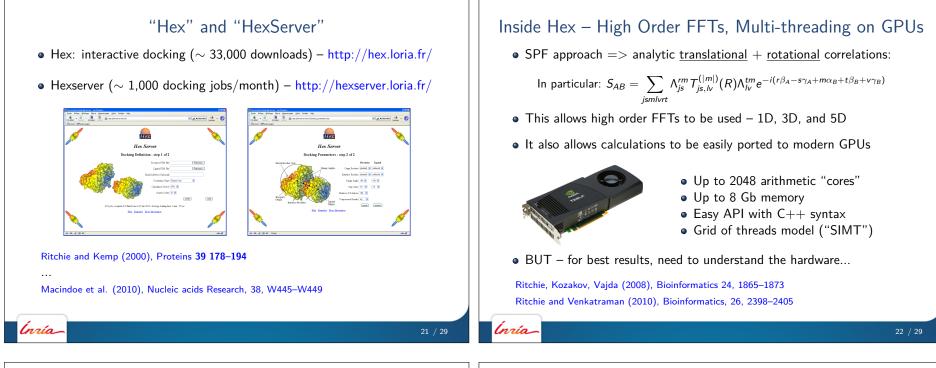
Mendez et al. (2003) Proteins Struct. Funct. Bionf. 52, 51-67

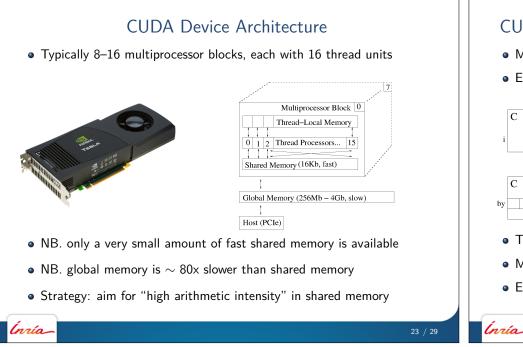
15 / 29

Subsequent CAPRI Targets 8 – 19

	Target	Description	Comments
-	Т8	Nidogen- γ 3 - Laminin	U/U
	Т9	LiCT homodimer	build from monomer – 12Å RMS deviation
	T10	TBEV trimer	build from monomer – 11Å RMS deviation
	T11	Cohesin - dockerin	U/U; model-build dockerin
	T12	Cohesin - dockerin	U/B
	T13	SAG1 - antibody Fab	SAG1 conformational change: 10Å RMS
	T14	MYPT1 - PP1 δ	U/U; model-build PP1 $lpha ightarrow$ PP1 δ
	T18	TAXI - xylanase	U/B
_	T19	Ovine prion - antibody Fab	model-build prion

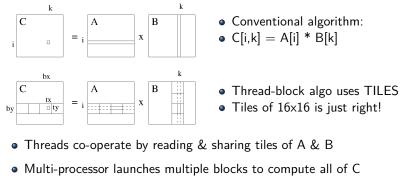
• T15-T17 cancelled: solutions were on-line & found by Google !!


• T11, T14, T19 involved homology model-building step...


CAPRI Results: Targets 8-19 (2003 - 2005)

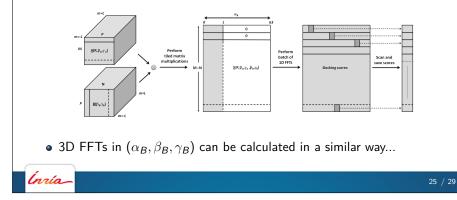
Software	T8	T9	T10	T11	T12	T13	T14	T18	T19
ICM	**		*	**	***	*	***	**	**
PatchDock	**	*	*	*	*	-	**	**	*
ZDOCK/RDOCK	**			*	***	***	***	**	**
FTDOCK	*		*	**	*		**	**	*
RosettaDock	-			**	***	**	***		***
SmoothDock	**				***	***	**	**	*
RosettaDock	***	-	-	**	***				**
Haddock	-	-	**	**		***	***		
ClusPro	**				***	*			*
3D-DOCK	**			*	*		**		*
MolFit	***			*	***		**		
Hex				**	***	*	*		
Zhou	-	-		-	***	**	*	*	
DOT					***	***	**		
ATTRACT	**		-	-	-	-	***		**
Valencia	*			*	*	-			-
GRAMM	-	-		-	-	-	**	**	
Umeyama				**	*				
Kaznessis	-	-			***				
Fano	-	-		*					

Mendez et al. (2005) Proteins Struct. Funct. Bionf. 60, 150-169



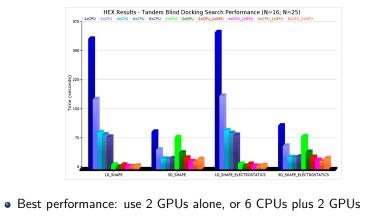
CUDA Programming Example – Matrix Multiplication

- Matrix multiplication C = A * B
- Each thread is responsible for calculating one element: C[i,k]


• Executing thread-blocks concurrently hides global memory latency

GPU Implementation – Perform Multiple FFTs

• Calculate multiple 1D FFTs of the form:


$$S_{AB}(\alpha_B) = \sum_{m} e^{-im\alpha_B} \sum_{nl} A^{\sigma}_{nlm}(R, \beta_A, \gamma_A) \times B^{\tau}_{nlm}(\beta_B, \gamma_B)$$

- Cross-multiply transformed A with rotated B coefficients
- Perform batch of 1D FFTs using cuFFT and save best orientations

Results – Multiple GPUs and CPUs

• With Multi-threading, we can use all available GPUs and CPUs

• 2 GPUs => 6D docking in about 15 sec - important for large-scale!

Speed Comparison with ZDOCK and PIPER

- Hex: 52000 x 812 rotations, 50 translations (0.8Å steps)
- ZDOCK: 54000 × 6 deg rotations, 92Å 3D grid (1.2Å cells)
- PIPER: 54000 × 6 deg rotations, 128Å 3D grid (1.0Å cells)
- Hardware: GTX 285 (240 cores, 1.48 GHz)

	Kallikrein A / BPTI (233 / 58 residues) $\#$								
	ZDOCK	PIPER [†]	PIPER [†]	Hex	Hex	Hex‡			
FFT	1xCPU	1xCPU	1xGPU	1xCPU	4xCPU	1xGPU			
3D	7,172	468,625	26,372	224	60	84			
(3D)*	(1,195)	(42,602)	(2,398)	224	60	84			
1D	_	_	_	676	243	15			

• What's next ?

Inría

- Better energy functions?
- Modeling flexibility?
- Multi-component complexes?
- Cross-docking?

Conclusions

- (+) Rigid-body docking on a GPU now takes only a few seconds:
 - $\bullet\,$ This was implemented using only 5 or 6 GPU kernels
- (-) Modeling protein flexibility during docking is still difficult
- SPF approach => high-throughput shape comparison now feasible:
 - All-vs-all docking ?

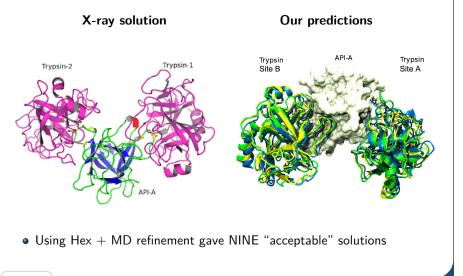
Inría

Inría

- Electron-microscopy density fitting ?
- Assembling multi-component machines ?
- (?) The next challenge modeling "the structural interactome"

26 / 29

Practical: CAPRI Target 40 – API-A/Trypsin


R Bao at al. (2009), J Biol Chem, 284, 26676-26684

"The Ternary Structure of the Double-headed Arrowhead Protease Inhibitor API-A Complexed with Two Trypsins Reveals a Novel Reactive Site Conformation"

The double-headed arrowhead protease inhibitors API-A and -B from the tubers of *Sagittaria sagittifolia* (Linn) feature two distinct reactive sites, unlike other members of their family. Although the two inhibitors have been extensively characterized, the identities of the two P1 residues in both API-A and -B remain controversial. The crystal structure of a ternary complex at 2.84 Å resolution revealed that **the two trypsins bind on opposite sides of API-A and are 34 Å apart.** The overall fold of API-A site sides of API-A belongs to the β -trefoil fold and resembles that of the soybean Kunitz-type trypsin inhibitors. The two P1 residues [on API-A] were unambiguously assigned as **Leu87** and **Lys145**, and their identities were further confirmed by site-directed mutagenesis...

• The CAPRI challenge: blind prediction of the two binding modes...

CAPRI T40 Results

Practical Activities

• Download the structures from: http://hex.loria.fr/emmsb/t40.tgz

- t40_a.pdb (Trypsin 1)
- t40_b.pdb (Trypsin 2)
- t40_c.pdb (API-A)
- t40_abc.pdb (solution)
- t40.col (Hex colour file)
- \bullet Load the structures C+A or C+B as "receptor" and "ligand"
- Experiment with different graphical viewing options
- Use the "edit mode" to try docking by hand
- Load the solution structure as "complex" and try again by hand
- Load the color file to highlight the key residues
- Does this help?
- Finally, place the API-A key residue near the trypsin site
- Set up and run a focused docking calculation (45 deg on each)
- View and analyse by eye the solutions generated

Ínría_

33 / 29