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The CAPRI Blind Docking Experiment
CAPRI = Critical Assessment of PRedicted Interactions

http://www.ebi.ac.uk/msd-srv/capri/
Given the unbound structure, predict the unpublished 3D complex...

T8 = nidogen/laminin
T9 = LiCT dimer
T10 = TEV trimer
T11-12 = cohesin/dockerin
T13 = Fab/SAG1
T14 = PP1δ/MYPT1
T15 = colicin/ImmD
T18 = Xylanase/TAXI
T19 = Fab/bovine prion

T11, T14, T19 involved homology model-building step...
T15-T17 cancelled: solutions were on-line & found by Google !!

3 / 35

CAPRI Target T6 Was A Relatively Easy Target
AMD9 (camel antibody) / Amylase (pig)
Little difference between unbound & bound conformations
Classic binding mode: antibody loops blocking the enzyme active site

Several CAPRI groups made “high accuracy” models (RMSD ≤ 1Å)
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CAPRI Target T27 Was A Surprisingly Difficult Target
Arf6 GTPase / LZ2 Leucine zipper was difficult for most predictors

http://www.ebi.ac.uk/msd-srv/capri/

Circles show LZ2 centres:

blue = high quality
green = medium quality
cyan = acceptable quality
yellow = wrong

Janin (2010) Molecular BioSystems, 6, 2362–2351
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Predicting Protein-Protein Binding Sites
Many algorithms/servers exist for predicting protein binding sites

For a review: Fernández-Recio (2011), WIREs Comp Mol Sci 1, 680–698
Many docking algorithms show clusters of orientations – docking “funnels”

Lensink & Wodak: docking methods are best predictors of binding sites
Fernández-Recio, Abagyan (2004), J Molecular Biology, 335, 843–865
Lensink, Wodak (2010), Proteins, 78, 3085–3095
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CAPRI Results: Targets 8 – 19
Software T8 T9 T10 T11 T12 T13 T14 T18 T19
ICM ** * ** *** * *** ** **
PatchDock ** * * * * - ** ** *
ZDOCK/RDOCK ** * *** *** *** ** **
FTDOCK * * ** * ** ** *
RosettaDock - ** *** ** *** ***
SmoothDock ** *** *** ** ** *
RosettaDock *** - - ** *** **
Haddock - - ** ** *** ***
ClusPro ** *** * *
3D-DOCK ** * * ** *
MolFit *** * *** **
Hex ** *** * *
Zhou - - - *** ** * *
DOT *** *** **
ATTRACT ** - - - - *** **
Valencia * * * - -
GRAMM - - - - - ** **
Umeyama ** *
Kaznessis - - ***
Fano - - *

Mendez et al. (2005) Proteins Struct. Funct. Bionf. 60, 150-169
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ICM Docking – Multi-Start Pseudo-Brownian Search
Start by sticking pins in protein surfaces at 15Å intervals
For each pair of pins, find minimum energy (6 rotations for each):

E = EHVW + ECVW + 2.16Eel + 2.53Ehb + 4.35Ehp + 0.20Esolv

Often gives good results, but is computationally expensive
Fernández-Recio, Abagyan (2004), J Mol Biol, 335, 843–865
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PatchDock – Docking by Geometric Hashing
Use “MS” program to calculate mesh surfaces for each protein
Divide the mesh into convex “caps”, concave “pits”, and flat “belts”

For docking, match pairs of concave/convex, and flat/any ...
... then test for steric clashes between rest of surfaces
The method is fast (minutes/seconds), and gave good results in CAPRI

Duhovny et al. (2002), LNCS 2452, 185–200
Schneidman-Duhovny et al. (2005), NAR, 33, W363–W367
Connolly (1983), J Appl Cryst, 16, 548–558
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Protein Docking Using Fast Fourier Transforms
Conventional approaches digitise proteins into 3D Cartesian grids...

...and use FFTs to calculated TRANSLATIONAL correlations:

C [∆x ,∆y ,∆z ] =
∑

x ,y ,z
A[x , y , z ] × B[x + ∆x , y + ∆y , z + ∆z ]

BUT for docking, have to repeat for many rotations – expensive!
Conventional grid-based FFT docking = SEVERAL CPU-HOURS

Katchalski-Katzir et al. (1992) PNAS, 89 2195–2199

10 / 35

Quick Summary of FFT Docking Methods
3D Cartesian FFT Methods

DOT (shape + electro): http://www.sdsc.edu/CCMS/DOT/
FTDOCK (shape + electro) http://www.sbg.bio.ic.ac.uk/docking/
GRAMM (shape?) http://vakser.bioinformatics.ku.edu/main/resources gramm.php
ZDOCK (shape + “ACP”) http://zdock.umassmed.edu/software/
PIPER (shape + “DARS” potential): http://cluspro.bu.edu/
MegaDock (shape only?): http://www.bi.cs.titech.ac.jp/megadock/

Polar Fourier FFT Methods
Hex (shape + electro): http://hex.loria.fr/
Frodock (shape only?): http://chaconlab.org/methods/docking/frodock/

Interactive FFT with 3D Graphics
Hex!
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Knowledge-Based Protein Docking Potentials
Several groups have developed “statistical potentials”
Example: DARS – “Decoys As Reference State” – http://structure.bu.edu/

Define interaction energy (“inverse Boltzmann”):
EIJ = −RT ln(Pnat

IJ /P ref
IJ )

Pnat
IJ = prob. that atoms I and J are in contact in native complex

P ref
IJ = reference state prob., calculated from 20,000 docking decoys

This gives a matrix of 18 x 18 atom-type interaction energies
Clever trick: diagonalise matrix to get first 4 or 6 leading terms...
... allows PIPER to use 4 or 6 FFTs instead of 18

PIPER + DARS is one of the best approaches in CAPRI...
Kozakov et al. (2006) Proteins, 65, 392–406
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DARS Finds More Hits Than ZDOCK or Shape-Only
These plots compare “hits” versus “rank”

DARS potential = red; ZDOCK (ACP) = green; shape-only = blue
Kozakov et al. (2006) Proteins, 65, 392–406
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Consider Protein Docking in Polar Coordinates
Rigid docking can be considered as a largely ROTATIONAL problem
This means we should use ANGULAR coordinate systems

With FIVE rotations, we should get a good speed-up?
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Spherical Polar Fourier Representations
Represent protein shape as a 3D shape-density function...

τ(r) =
∑N

nlm aτnlmRnl (r) ylm(θ, φ)

...using spherical harmonic, ylm(θ, φ), and radial, Rnl (r), basis functions

Image Order Coefficients
A Gaussians -
B N = 16 1,496
C N = 25 5,525
D N = 30 9,455
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Protein Docking Using SPF Density Functions

Favourable:
∫

(σA(rA)τB(rB) + τA(rA)σB(rB))dV

Unfavourable:
∫
τA(rA)τB(rB)dV

Score: SAB =

∫
(σAτB + τAσB − QτAτB)dV , Penalty Factor: Q = 11

Orthogonality: SAB =
∑

nlm

(
aσnlmbτnlm + aτnlm

(
bσnlm − Qbτnlm

))

Search: 6D space = 1 distance + 5 Euler rotations: (R, βA, γA, αB , βB , γB)
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HexServer – GPU-Accelerated Web Server

Very fast – can cover 6D search space using 1D, 3D, or 5D FFTs...

“Easy” to accelerate the 1D FFTs on highly parallel GPUs ...

Widely used around the world – 33,000 downloads...

http://www.loria.fr/hex/ and http://www.loria.fr/hexserver/
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RosettaDock – Flexible Side Chain Re-Packing
Given a rigid body starting pose, repeat 50 times:

REMOVE and RE-BUILD side chains
Minimise as rigid-body with Monte-Carlo accept/reject

Successful on several CAPRI targets and 50% of Docking Benchmark v2
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Haddock – “Highly Ambiguous Data-Driven Docking”
Flexible refinement using CNS with ambiguous interaction restraints (AIRs)
Use of “active” and “passive” residues ensures active residues at interface
E.g. residue i of protein A: deff

iAB =
(∑NiA

miA=1
∑NresB

k=1
∑NkB

nkB=1
( 1

d6
miA,nkB

))−1/6

Restraints from:
SAXS
mutagenesis
mass spec
NMR

van Dijk et al. (2005) FEBS J, 272, 293–312
van Dijk et al. (2005) Proteins, 60, 232–238
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Modeling Protein Flexibility Using Elastic Network Models
ENMs assume protein Cα atoms are coupled via a harmonic potential ..

V=potential, dij=distance, d0
ij =ref distances, H=Hessian, C=const

E=eigenvector matrix, e i =normal modes, Λii =magnitudes

V =
∑

i<j C(dij − d0
ij )

2

Hij = (∂/∂xi )(∂/∂xj)V

H = E T .Λ.E

Then, represent protein as a linear combination of first eigenvectors:
PNEW = P0 +

∑3N
i=6 wi e i

On-line examples:
ElNémo web-server: http://www.igs.cnrs-mrs.fr/elnemo/
Macromolecular Movements: http://www.molmovdb.org/

Tirion (1996), Physical Review Letters, 77, 1905–1908 (first paper)
Andrusier et al. (2008), Proteins, 73, 271–289 (review
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Simulating Flexibility Using “Essential Dynamics”
Generate distance-constrained samples in CONCOORD, then apply PCA

Covariance matrix, C:
Cij = < (xi − x i )(xj − x j ) >

Eigenvectors, E:
C = E .Λ.E T

Conformations, P:
PNEW ' P0 +

∑n
k=1 αkek

First eigenvectors encode most of RMSD between bound and unbound
See also SwarmDock – http://bmm.cancerresearchuk.org/∼SwarmDock/

Mustard, Ritchie (2005), Proteins 60, 269–274 (first NMA protein docking?)
Moal, Bates (2010) Int J Molecular Sciences, 11, 3623–3648 (SwarmDock)
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EigenHex – Flexible Docking Using Pose-Dependent ENM
Apply fresh eigenvector analysis to the top 1,000 Hex orientations

Overall approach:
Cα elastic network model (ENM)
Use up to 20 eivenvectors
Search using PSO
Score using DARS potential

Results:
DARS works well but...
Still need better scoring function
Much effort – small improvement!!

Venkatraman, Ritchie (2012), Proteins, 80, 2262–2274

22 / 35

Docking Symmetric Structures
Several groups have developed symmetry docking algorithms

Molfit (D2): Berchanski et al. (2003), Proteins, 53, 817–829
M-ZDOCK (Cn): Pierce et al. (2005), Bioinformatics, 21, 1472–1478
SymmDock (Cn): Schneidman et al. (2005), Proteins, 60, 224–231
Cluspro (Cn,D2,D3): Comeau et al. (2005), JSB, 150, 233-244

(these algorithms “post-filter” blind docking searches)

Symmetric complexes are remarkably common in the PDB

n 2 3 4 5 6 7 8
Cn 8740 992 223 107 76 29 5
Dn 2111 585 173 46 20 23 6

(data from: http://www.3dcomplex.org)
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Coming Soon: “SAM” – Symmetry Assembler
Uses multiple 1D Polar Fourier FFT searches

Implemented for all point group symmetries: Cn, Dn, T , O, I
Works well for small protein domains...

Need to develop coarse-grained scoring for large proteins
Need to extend to symmetric cryo-EM density fitting...
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Systems Biology View of Protein-Protein Interactions
Protein interactions are central to many biological systems

Each protein is part of a large network of interactions
To understand how proteins really work, we need to know their
three-dimensional structures... But solving structures is difficult!
We need to exploit knowledge of known structures and interactions...
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Protein-Protein Interaction Challenges
Can we predict all interactions within a proteome – the interactome?

For each interaction, can we predict the interface and 3D complex?
For each protein can we predict its ligand binding sites?

Wass, David, Sternberg (2011) Current Opinion in Structural Biology, 21, 382–390
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Protein-Protein Interaction Resources
STRING – Search Tool for Retrieval of Interacting Genes

12 million known PPIs; 44 million predicted – http://string.embl.de/

3DID – 160,000 DDIs – http://3did.irbbarcelona.org/

KBDOCK – Knowledge-Based Docking (“Domain Family Binding Sites”)
280,000 DDIs + 4,000 DFBIs – http://kbdock.loria.fr/

Szklarzyk et al. (2011), Nucleic Acids Research, 39, D561–D568
Stein et al. (2010), Nucleic Acids Research, 33, D413–D417
Ghoorah et al. (2014), Nucleic Acids Research, 42, D389–D395
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CAPRI Target 40 (2009) – API-A/Trypsin
It was given that there were TWO different binding sites
We searched SCOPPI and 3DID for similar 3D interactions
This helped to identify two inhibitory loops on API-A

Using Hex + MD refinement gave NINE “acceptable” solutions
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The KBDOCK Database and Web Server
Domains are superposed and clustered by PFAM family
∼ 8,000 non-redundant domain family binding sites (DFBSs)
∼ 20,000 domain family interactions (DFIs)

http://kbdock.loria.fr/

Ghoorah et al. (2014) NAR, 42, D389-D395
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The Inside of a Cell is Highly Crowded
This image shows a model of the cytoplasm in E. Coli

Can we use docking algorithms to predict the protein-protein interactions ?

McGuffee, Elcock (2009), PLoS Comp Biol, 6, e1000694
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Large-Scale Cross-Docking Using Hex
Wass et al. cross-docked 56 true pairs with 922 non-redundant “decoys”
For each pair, they plotted the profile of the best 20,000 docking scores...
(-ve scores are good; red/blue = correct PPI; red/cyan = incorrect interactions)

48/56 true PPIs have significantly higher energies than false pairs
Only 8/56 true PPIs have indistinguishable profiles to the non-binders

Wass et al. (2011) Molecular Systems Biology, 7, article 469
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IMP – Integrative Modeling Platform
Python system for multi-component modeling – http://salilab.org/imp/
Combines data from: cryoEM (mainly), X-Ray, NMR, SAXS, Modeller, ...
... with with interaction data from BioGRID – http://thebiogrid.org/

Minimise multi-term objective function:
F =

∑
i αi +

∑
i<j βij

αi are single-body terms (e.g. density fitting score, protrusion penalty)
βij are two-body terms (e.g. docking scores)

But it is a highly combinatorial search space, with missing/incomplete data...

Russel et al. (2012) PLoS Biology, 10, e1001244
Lasker et al. (2009) J Molecular Biology, 388, 180–194
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Putting The Pieces Together – The Nuclear Pore Complex
The NPC has some 650 components – raw data at http://salilab.org/npc/

It required an immense multi-disciplinary effort to build this model ...
See Dreyfuss et al. for an interesting computational validation of the model

Alber et al. Nature (2007) 450, 683–694 and 695–701
Dreyfuss et al. Proteins (2012) 80, 2125–2136
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Conclusions
(+) Better potentials are helping to improve pair-wise docking
(+) Cross-docking can detect true partners remarkably often
(+) General symmetry assembly is “coming soon”...

(−) Modeling protein flexibility during docking is still difficult

(+) Knowledge-based protein docking is becoming very useful
Most Pfam families have just one binding site – often re-used

(+) Current strategy: “data-driven” or “knowledge-based” docking

(?) The next challenge – modeling “the structural interactome”
All-vs-all docking ?
Electron-microscopy density fitting ?
Assembling multi-component machines ?
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Hex program and papers:
http://hex.loria.fr/


